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Abstract

By an extension of Harnad’s and Dubrovin’s ‘duality’ constructions, the general isomonodromy problem studied by Jimbo,
Miwa, and Ueno is equivalent to one in which the linear system of differential equations has a regular singularity at the origin and
an irregular singularity at infinity (both resonant). The paper looks at this dual formulation of the problem from two points of view:
the symplectic geometry of spaces associated with the loop group of the general linear group, and a generalization of the self-dual
Yang–Mills equations.
c© 2006 Elsevier B.V. All rights reserved.

1. Introduction

The isomonodromy problem studied by Jimbo et al. [8–10] concerns the deformations of a linear system of ordinary
differential equations in the complex plane of the form

dy
dx

= Ay. (1)

Here x ∈ C, y is a column vector of length `, and

A(x) =
Q(x)

q(x)

is an ` × ` matrix-valued rational function of x , with q a complex polynomial, Q a matrix-valued polynomial, and
deg(Q) = deg(q) − 2. The poles of A are the roots λ1, . . . , λp of q(x), with the order of the i th pole equal to the
multiplicity ki of λi . Thoughout, we assume for each i that Q(λi ) has distinct nonzero eigenvalues, with no two
differing by 1.

By imposing the condition on the degree of Q, we diverge from Jimbo et al. in excluding singularities in the system
at x = ∞; but as the theory is invariant under conformal transformations of x , this restriction is not a real one. We
can always move a singularity at infinity to a finite value of x by making a Möbius transformation.

The isomonodromic deformation problem is to determine variations of A that preserve the monodromy data of
the system—that is, the monodromy representation together with the Stokes’ matrices at the irregular singularities
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and the connection matrices between the solutions with particular asymptotic behaviour at the poles. A solution is a
family of ODEs of the form (1) with the same data, parametrized by local coordinates on a deformation manifold D.
Jimbo et al. characterize the isomonodromic dependence of A on the coordinates in terms of the existence of a matrix-
valued 1-form Ω , with rational functions of x as entries. The properties of Ω are determined by the singularities in
A; in particular, Ω has poles in x only at the singularities of A. The central condition is that the curvature of the
meromorphic connection

∇ = d − A dx + Ω

should vanish.
In this paper, I shall explore some aspects of another formulation of the problem. The starting point is that

deformation conditions can be rewritten in the form

db + [β, b] = 0, [β, a] = [b, da]. (2)

Here a, b are N × N matrices, where N = ` deg q . We think of a as the independent variable and b as the dependent
variable. The independent variable a takes values in an abelian subalgebra a ⊂ gl(N , C) determined by the original
problem, and α and β are matrix-valued 1-forms on a, regarded as a complex manifold. The generic matrices in a all
have the same Jordan canonical form, with eigenvalues determined by the positions of the poles of A and with the
sizes of their Jordan blocks determined by their orders. The second equation determines β, up to a residual gauge
freedom. The first then determines the dependence of b on a. The matrix b must satisfy three constraints:

• it has rank ` and b2
= 0;

• it satisfies an algebraic constraint that ensures that the second equation can be solved for β;
• with E denoting the Euler vector field that generates the flow a 7→ eτ a, τ ∈ C, we have b = iEβ and LEβ = 0.

The constraints are compatible with (2).
The relationship between the two forms of the problem is an extension of Harnad’s duality [6]. Indeed (2) implies

that the deformations of the system

z
dv

dz
+ (az + b)v = 0,

are isomonodromic as a varies. However this is a nonstandard isomonodromy problem, because a is not
diagonalizable: not only does it have a nontrivial Jordan canonical form, but it also has ` Jordan blocks corresponding
to each eigenvalue. Both these features lead to complications that are not immediately apparent in the simple form of
the Eq. (2). The general theory of deformations of such ‘resonant’ singularities has been explored recently by Bertola
and Mo [2].

Given a solution of (2), one can recover a solution of the original problem by noting that (2) implies that the
connection

d − (a − x)−1 (da − dx)b + β

has zero curvature. It induces a flat meromorphic connection on the bundle CN / ker b over the product of the
deformation manifold with CP1, which coincides up to gauge with ∇.

The second form of the deformation equations leads to two other ways of looking at the problem. The first is in
terms of the symplectic geometry of a manifold constructed from the loop group LGL(N , C) by taking some ideas
from Pressley and Segal [12, pp. 49,50]. We let Γ ⊂ C denote a unit circle in the complex plane and consider the set
of smooth 1-forms on Γ with values in gl(N , C). Each 1-form µ = B dz determines a monodromy matrix m, up to
conjugacy: it is defined by picking a fundamental solution y : Γ → GL(N , C) of the differential equation

dy + µy = 0 (3)

and by taking m to be the constant matrix y−1 ỹ, where ỹ is the continuation of y once around Γ in the positive sense.
Since y is unique up to multiplication on the right by a constant matrix, the monodromy is determined by µ up to
conjugacy.
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We denote by M the set of 1-forms whose monodromy is conjugate to a fixed matrix m. Any two elements µ, µ̂

ofM are related by a gauge transformation

µ̂ = g−1µg + g−1dg.

A tangent toM is determined by a map h : Γ → gl(N , C) by

δµ = Dh = dh + [µ, h].

So we can define a symplectic form onM by

ω(h, h′) =
1

2π i

∮
tr(hDh′).

It is skew symmetric, by integration by parts, and non-degenerate, since ω(h, .) = 0 only if dh − µh = 0. It is also
closed.

By using Birkhoff’s factorization theorem, almost every µ ∈ M can be reduced by a gauge transformation by
f− ∈ LGL−(N , C) to the form

µ+ + z−1b dz (4)

where b is constant, with exp(2π ib) conjugate to m, and where µ+ extends holomorphically to the interior of Γ in
the complex plane. The gauge transformation is uniquely determined by µ if we impose the condition f−(∞) = 1.

Within this framework, we obtain a simple symplectic interpretation of the deformation equations. We consider
the group LGL−2(N , C) of loops that extend holomorphically to the outside of Γ , and are of the form 1 + O(z−2) as
z → ∞. This group has a Hamiltonian action onM by gauge transformations, and the resulting Marsden–Weinstein
reduction is a finite-dimensional complex symplectic manifold. For points of this manifold, the gauge transformation
to (4) results in a 1-form

(a + z−1b) dz.

Thus we have a projection from the reduced symplectic manifold onto systems of the form

dv

dz
+ (a + z−1b)v = 0.

The Hamiltonians are defined from spectral invariants of B in a neighbourhood of z = ∞. They are of two types:
Hamiltonians in involution that move the poles of A, but leave the singularity behaviour at the poles unchanged but
for a coordinate transformation; and others that fix the poles, but change the remaining deformation parameters. The
flows commute with the projection, and generate isomonodromic deformations.

The final results concern the interpretation of (2) as a symmetry reduction of a generalized form of the self-dual
Yang Mills equations on a ‘space–time’ which is the product M = a × a of two copies of a. The space–time variables
are matrices s, t ∈ a. Given a solution to the deformation problem, we put

D = d + Φ = d + ds + β(t) (s, t) ∈ M (5)

and regard D as a connection on the trivial CN bundle over M. The curvature of Φ is

dβ + β ∧ β + ds ∧ β + β ∧ ds.

If we restrict the connection to an N -plane in M of the form

ω = π1s + π0t (6)

where ω ∈ a and (π0, π1) ∈ C2 are constant, then the curvature of the restricted connection is

dβ + β ∧ β − z(dt ∧ β + β ∧ dt),

where z = π0/π1. This vanishes as a consequence of the deformation equations (2). Conversely, if the curvature
vanishes on every such N -plane and LEβ = 0, then (2) holds with b = iEβ.
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There is a close analogy with the condition that a connection on a complex Minkowski space should be a solution
to the self-dual Yang–Mills equations, namely that the restriction of the connection to null α-planes should be flat
[13, p. 373]. Indeed, when a = C2 as a vector space, it is precisely that. So we call the N -planes defined by (6) for
constant ω and πA null N -planes, and we say that a connection D that has vanishing curvature on every null N -plane
is self-dual. The terminology is derived purely from the analogy: there is no metric on the ‘space–time’ with respect
to which the ‘null N -planes’ are null, and no duality operator on 2-forms.

The ‘self-duality’ condition involves only the structure of a as a vector space. It has been studied as a generalization
of the self-dual Yang–Mills equation (see [11, Section 8.6]). In itself, it does not involve the algebraic structure of a.
This comes into play when we look at the extra invariance conditions on D that follow from the special form of (5).
The transformations which are of interest here are those that map null N -planes to null N -planes. These include the
three flows

(s, t) 7→ (s, eτ t), (s, t) 7→ (s + τc, t), (s, t) 7→ (s, t + τc),

where τ ∈ C is the parameter along the flows and c ∈ a is constant. We denote the respective generating vector fields
on M by E , Sc, and Tc. The connection form Φ in (5) has a vanishing Lie derivative along the ‘Euler vector field’ and
along the vector fields Sc, c ∈ a.

In a general setting, a connection form Φ can undergo a gauge transformation

Φ 7→ g−1Φg + g−1dg,

where g takes values in the corresponding gauge group. It is equivariant along a vector field X if g can be chosen
so that Φ is invariant, in the sense that its Lie derivative along X vanishes. In this case the corresponding Higgs field
φX = iXΦ transforms by conjugation under gauge transformations that preserve the invariance.

With this terminology, solving the deformation problem is equivalent to finding a ‘self-dual’ GL(N , C) connection
on M satisfying the invariance conditions:

• It is equivariant along E with Higgs field conjugate to the monodromy generator.
• It is equivariant under the translations Sc, and the image of a under c 7→ φSc is everywhere conjugate to a in

gl(N , C).

Note that if Φ is equivariant under the Lie algebra of translations in s, then the image is in any case necessarily
abelian. The structure of M allows to us define a linear operator on 1-forms on M by α 7→ α∗,

iTcα
∗

= iScα, iTcα = iScα
∗.

In this notation, a general gauge potential can be written Φ = α∗
+β, where α and β contain only dt terms. Under the

invariance conditions, we can choose the gauge so that the components of α and β are functions of t alone, α takes
values in a, and

LXα = α, LEβ = 0. (7)

The self-duality condition is

dα + α ∧ β + β ∧ α = 0, dβ + β ∧ β = 0.

Proposition 9 in Appendix B then implies that the gauge can be chosen so that dα = 0 and so that (7) also holds in
the new gauge. If we put a = iEα, we then have

α = da, da ∧ β + β ∧ da = 0, dβ + β ∧ β = 0.

By changing the t-variable to a, we then have a connection in the form (5). With b = iEβ, we also have (2). In fact,
under the invariance conditions, the self-duality condition is equivalent to (2), with LEβ = 0, by this construction.

An application of standard twistor methods gives the following result, which can be understood as an explanation,
in part, of the Painlevé property of the deformation equations (see also [1]). Suppose that b(a) is a solution to (2) on
a simply-connected open set W ⊂ a, with b = iEβ and LEβ = 0. Then the linear system

d f + β(a) f + zda f = 0

has a solution f (a, z) on W × C that depends holomorphically on z. Suppose that s, t ∈ a are such that
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t + eiθ s ∈ W

for all real θ . Then for generic s and t satisfying this condition, we have a unique Birkhoff factorization

f (z−1s + t, z) = f −1
− (s, t, z) f+(s, t, z)

where f+ and f− are holomorphic with respect to z, respectively inside and outside the unit circle in the z-plane, and
f− = exp(−s) at z = ∞. We prove the following.

Proposition 1. The value of f+ at z = 0 is independent of s, and f+(s, t, 0) = f (t, 0) for t ∈ W .

Since f (a, 0) determines β and hence b = iEβ, the effect is to reduce the problem of propagating b out of W to
the solution of a Riemann–Hilbert problem. Singularities arise at the points where the factorization fails, but they are
poles.

2. Isomonodromic deformations

Suppose that λi is a root of q with multiplicity ki , and put xi = x − λi . By diagonalizing Q in a neighbourhood of
λi , we can write

A = gi (xi )
d

dxi
(x−ki +1

i ti (xi ) + mi log xi )gi (xi )
−1

+ O(1) (8)

as xi → 0, where mi is a constant diagonal matrix, and ti (xi ) is a diagonal matrix with entries polynomial of degree
ki − 2 in xi . At the regular singularities (ki = 1), we put ti = 0. The diagonal entries in mi are called the exponents
of formal monodromy.

The matrices that diagonalize A near the poles, and hence determine its principal parts, need only be known up
order xki −1

i . They coincide, up to this order and up to right multiplication by a diagonal matrix, with the matrices
found by Jimbo et al. as formal power series in xi by looking for formal series solutions to the linear system in a
neighbourhood of each pole.

The exponents of formal monodromy are unchanged in the deformations, which are parametrized by the positions
of the poles and by the coefficients of the polynomials ti at the irregular singularities. The parameters are local
coordinates on a complex deformation manifold D of dimension

∑p
i (`(ki − 1) + 1).

The infinitesimal isomonodromic deformations of A are determined by the 1-form

Ω =

∑
i

(A dλi − x−ki +1
i gi dti g−1

i )i,−, (9)

where d is the holomorphic exterior derivative onD, with xi held constant, and the subscript i , — denotes the negative
terms in the Laurent expansion in xi ; see Boalch [3]. The components of Ω are matrices with rational functions of
x as entries. Jimbo et al. show that solving the isomonodromic deformation problem is equivalent to satisfying the
condition that

∇ = d + Ω − A dx

should be a flat meromorphic connection. That is,

dA = [A,Ω ] −
dΩ
dx

, dΩ + Ω ∧ Ω = 0. (10)

Eq. (10) solves the deformation problem for A: given A at one point of D, we can compute Ω , and so determine
the deformed linear system at a nearby point. A straightforward, but intricate, calculation turns this into a system of
nonlinear equations for the coefficients of Q as functions onD. Our alternative form of the deformation equations uses
a different coordinate system onD, in which the entries in a replace the parameters λi and ti . The explicit relationship
is given in Appendix A.

The flatness condition is preserved by transformations

A 7→ g−1 Ag, Ω 7→ g−1Ωg + g−1 dg,
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where d is the exterior derivative on D and g : D → GL(`, C); that is, by gauge transformations independent of x .
Thus we should think of the connection as being defined on the pull-back by the projection π : D × CP1 → D of a
holomorphic vector bundle F → D. With Ω is defined by (9), we have that Ω∞ = Ω |x=∞ = 0. In a general gauge,
however, Ω∞ 6= 0 and (9) is replaced by

Ω =

∑
i

(Adλi − x−ki +1
i gi dti g−1

i )i,− + Ω∞.

We denote by ∇∞ = d +Ω∞ the flat connection on F given by restricting ∇ to x = ∞. If the gauge is not given, then
we must specify ∇∞ in order to fix ∇.

3. Structure of the deformation manifold

The tangent space to the deformation manifold at each point has the structure of a finite-dimensional complex
commutative algebra with identity, with its multiplication law defined as follows. For a tangent X toD, put ΩX = iXΩ .
If X, Y are tangent at a point, then we define XY by the condition that

ΩXY − ΩX A−1ΩY

should be holomorphic at the poles. The identity I is the deformation determined by ΩI = A (translation of the poles
by the same constant, leaving the other parameters fixed).

To put this another way, let hi denote the quotient of the algebra of holomorphic maps from a neighbourhood of
the pole λi into M`(C) (the ` × ` complex matrices) by the ideal generated by q(x)1`. Let

h =

⊕
i

hi .

Then the first ki terms in the Taylor expansion of A−1Ω at each λi determine a 1-form αi on D with values in hi .
The sum α =

∑
i αi is a 1-form with values in h and the algebraic structure in the tangent space is induced by matrix

multiplication of the αi s. The fact that the image of the tangent space under α is a commutative subalgebra of h
follows from the form of A and Ω (9). The algebraic structure can be expressed entirely in terms of the coordinates
on D, independently of the particular solution of the deformation problem. We shall see below that the deformation
equations take a particularly simple form in coordinates that are well adapted to the algebraic structure.

The tangent space at a point of D decomposes as a vector space into a sum of the semi-simple subalgebra spanned
by the deformations, for which

iXαi = X (λi )1`

and the subalgebra made up of the nilpotent elements, which are characterized by the vanishing of iX (A−1Ω) at
the poles. The former deformations simply move the poles without changing the singular parts of A dx , beyond a
coordinate transformation. The latter fix the poles, but can change the other deformation parameters.

The original system of ordinary differential equations is determined by the 1-form A dx on the Riemann sphere.
There is a special class of deformations which are given by the action of SL(2, C) on CP1. They are given by

ΩX = c(x)A,

where c is a complex quadratic in x . Two important special cases are c = 1, where the corresponding vector field I
on D translates all the poles, leaving A otherwise unchanged; and the Euler vector field E , given by c = x , which
rescales the coordinate x . The vector field I is the identity in the tangent space at each point. That is, I X = X for any
tangent X to D. Note that iEα = x and that i I α is the identity.

4. The transformed problem

The general isomonodromy problem can be transformed into a simpler one, in which the linear system of ODEs is

z
dv

dz
+ (az + b)v = 0, (11)
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where v takes values in a vector space V , and a and b are elements of the Lie algebra of the general linear group of
V . This system has a regular singularity at z = 0 and an irregular one at infinity. The corresponding isomonodromy
problem is familiar in a number of contexts in the case that a is diagonalizable—the non-resonant case, as for example,
in the theory of Frobenius manifolds [4,7]. But in the problem that we consider, a has a nontrivial Jordan canonical
form, with the locations of the poles in the original problem as eigenvalues, and the block structure determined by
their ranks. There is the further complication that there are ` Jordan blocks corresponding to each eigenvalue.

The vector space V in the transformed problem is defined to be the direct sum

V = V1 ⊕ · · · ⊕ Vp,

where Vi is the space of complex polynomials in the variable xi of degree ki − 1, with values in C`. Thus v ∈ V
is an p-tuple (v1, . . . , vp), where vi is a polynomial in xi , taking values in C`. The dimension of the whole space is
N = `

∑
ki .

Given the λi s, we can put xi = z − λi , and so represent the elements of V in terms of equivalence classes of
holomorphic maps u : U → C`, where U is the union of disjoint open neighbourhoods Ui of the points λi on the
Riemann sphere. Two maps u, u′ are equivalent whenever their difference has a zero of order ki at λi for each i . We
go back and forth between the two representations by putting xi = x − λi and by defining vi to be the first ki terms in
the expansion of u in powers of xi at x = λi .

We denote the general linear group of V by G and its Lie algebra by g. A linear transformation g ∈ G is a block
matrix

g =


g11 g12 . . . g1p
g21 g22 . . . g2p
...

...

gp1 gp2 . . . gpp

 , (12)

where gi j : V j → Vi . A key subgroup H ⊂ G is the group of transformations u 7→ hu, where h : U → GL(`, C) is
holomorphic; two such maps give the same element of G whenever their difference is a holomorphic multiple of q. In
this subgroup, the off-diagonal blocks in (12) are zero. If we construct a basis for V by using the coefficients of the
vi s as linear coordinates, ordered appropriately, then the diagonal blocks are themselves block matrices of the form

h0 h1 h2 . . . hki −2 hki −1
0 h0 h1 . . . hki −3 hki −2

. . .
. . .

0 0 0 . . . h0 h1
0 0 0 . . . 0 h0

 , (13)

where the h j s are ` × ` matrices—the coefficients in the expansion of h(z) around the corresponding pole. We shall
go back and forth between two interpretations of an element h of H, or of an element of the Lie algebra h of H: as a
linear map V → V , and as a holomorphic map U → GL(`, C).

Within H, there is the abelian subgroup A, in which the class of h has a diagonal representative and h(λi ) is a
scalar multiple of the identity for each i . Here the hi s are diagonal, and the h0s are multiples of the identity. The Lie
algebra a of A will be central in what follows. It is the model for the algebraic structure on the tangent space at each
point of the deformation manifold.

In passing from the original isomonodromy problem to the new one, we define a and b by

au = xu, bu = −

∑ 1
2π i

∮
∇u (14)

where the integrals are around contours surrounding the poles and the sum is over the poles. Thus bu is a constant
map U → C`. In the basis above, a is in Jordan canonical form. If h ∈ g and [h, a] = 0, then h ∈ h.

Lemma 1. Suppose that h ∈ h and b(a − w)−1hv = 0 identically in w 6∈ U for every v ∈ V which is independent of
x. Then h = 0.
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Proof. The representation of h as a matrix-valued function of x ∈ U is unique up to the addition of a holomorphic
multiple of q(x). In particular we can define h(x) by

h(x)v = q(x)
∑ 1

2π i

∮
(hv)(w) dw

(w − x)q(w)

for v independent of x . It is then a polynomial of degree deg(q) − 1 and we have that, for any v independent of x ,

b(a − x)−1hv =

∑ 1
2π i

∮
Q(w)h(w)v dw

(w − x)q(w)
= −A(x)h(x)v. (15)

The integrals have been evaluated by using Cauchy’s theorem to replace the contours around the roots of q by a
contour around w = x together with one around w = ∞, and by making use of the fact that h/q → 0 at infinity. If
the left-hand side of (15) vanishes identically in x , then h(x) = 0.

5. Deformations of the transformed system

We want to understand the isomonodromic deformations of (11) when b ∈ g and

a : u 7→ xu.

We shall show that they are equivalent to the deformations of the original problem: the relationship is a variant of
Harnad’s [6] duality, and of Dubrovin’s [4] transformation between two forms of the equations for a semisimple
Frobenius manifold. The complication is that a is not diagonalizable, except in the case that the original system has
only regular singularities, so that we cannot apply directly the standard theory.

In the basis defined above, a is in Jordan canonical form. Its off-diagonal blocks are zero, and the diagonal blocks
are 

λi 1` 1` 0 0 . . . 0
0 λi 1` 1` 0 . . . 0

. . .
. . .

0 0 0 0 . . . λi 1`

 .

We shall be interested only in deformations that leave the positions of the poles at 0 and ∞ fixed. It is not immediately
apparent what is meant by ‘isomonodromic deformation’ in this setting. In passing from the non-resonant case, we
take the first of Eqs. (10) to characterize ‘isomonodromy’. Since the system has a regular singularity at the origin and
a pole of order two at infinity, we look for deformations of the form

δ(a + z−1b) =
dω

dz
+ [a + z−1b, ω]

where ω = za′
+ b′, with a′, b′

∈ g. The condition that the deformed linear system should be of the same form as the
original implies

[a, a′
] = 0, [a, b′

] + [b, a′
] = δa − a′, (16)

where δa is the variation of the matrix of a: it is diagonal, with diagonal entries δλi .
When a is diagonal with distinct eigenvalues, the first equation is satisfied whenever a′ is also diagonal; the second

can then be solved for b′, up to the addition of a diagonal matrix. In our case, however, the first equation implies that
a′ lies in h, but the second imposes algebraic further constraints on a′.

To understand how such deformations arise from a solution to the original problem, we need some notation. The
elements of the Lie algebra of h ⊂ g are holomorphic maps h : U → gl(`, C), modulo the addition of maps that
vanish to order ki at each λi . We define a nondegenerate bilinear form on h by

〈h, ĥ〉 =
1

2π i

∑
i

∮
tr(x−ki h(x)ĥ(x))dx,



N.M.J. Woodhouse / Journal of Geometry and Physics 57 (2007) 1147–1170 1155

where the integrals are around the poles λi . We then have a linear projection g → h : b → hb defined by

〈hb, h〉 = tr(bh) for h ∈ h

where on the right the trace is the trace of bh as an element of g. Suppose we write b in the block form (12). For each
i , the i th diagonal block can be written in the basis above as

bi
11 bi

12 . . . bi
1ki

bi
21 bi

22 . . . bi
2ki

...

bi
ki 1 bi

ki 2 . . . bi
ki ki

 , (17)

where the entries are themselves ` × ` matrices. On Ui

hb(x) = h0 + h1(x − λi ) + h2(x − λi )
2
+ · · · + hki −1(x − λi )

ki −1

where the coefficients are the sums of the sub-diagonals:

h0 = bi
ki 1, h1 = bi

ki −1,1 + bi
ki 2, h2 = bi

ki −2,1 + bi
ki −1,2 + bi

ki 3, . . . .

In particular, when b is defined by (14),

hb(x) = (x − λi )
ki A(x) + O((x − λi )

ki ) as x → λi .

Thus we can recover the singular parts of A at each pole, and hence A itself, from b. We can also deduce from our
assumption about A(x) that if b is defined by (14), then for x close to λi , no two eigenvalues of hb differ by 1. The
following is a consequence of the definition.

Lemma 2. Suppose that for b ∈ g and h ∈ h, we have hbh = hbh and hhb = hhb.

Proposition 2. Suppose that a = x. If (16) holds, then a′
∈ h and [a′, hb] = 0. Conversely, suppose that for each i ,

hb(λi ) has distinct eigenvalues, no two differing by 1. If a′
∈ h and [a′, hb] = 0, then there exists b′

∈ g such that
(16) holds.

Proof. With a = x , we have [a, h] = 0 for all h ∈ h. Conversely, if [a, a′
] = 0 then a′

∈ h. So the first statement
follows from the lemma since [a, hb′ ] = 0 and therefore from (16), on Ui

[hb, a′
] = δλi 1ki − a′.

By diagonalizing hb in a small neighbourhood of λi , it follows from the assumption about hb(λi ) that [hb, a′
] = 0

and a′
= δa.

So the converse statement is immediate from the following lemma.

Lemma 3. Suppose that a = x is in Jordan canonical form, and that c ∈ g. Then there exists b ∈ g such that
[a, b] = c if and only if hc = 0.

Proof. Suppose that c is given with hc = 0. The off-diagonal blocks in b are uniquely determined by those in c,
provided that the λi s are distinct. For a diagonal block, we must solve


0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

0 0 0 0 . . . 0

 ,


b11 b12 b13 . . .

b21 b22 b23 . . .

b31 b32 b33 . . .
...

bk1 bk2 bk3 . . .


 =


c11 c12 c13 . . .

c21 c22 c23 . . .

c31 c32 c33 . . .
...

ck1 ck2 ck3 . . .


where the bi j s and ci j s are ` × ` matrices and 1 denotes the identity matrix. Without loss of generality, we can set
b1 j = 0 for j = 1, . . . , k. By working successively across the columns of the equation, and by comparing the first
k − 1 entries on each column on each side, we determine the other entries in b. The equality of the last row on each
side then follows from hc = 0. The converse is a consequence of the previous lemma.
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We want to show that our original deformation problem can be recast in terms of deformations of the linear system
of ODEs (11), where a ∈ g is conjugate to v 7→ xv. To take account of various ‘gauge transformations’ it is helpful
to think of v as lying not in the fixed vector space V , but in a holomorphic bundle V → D over the deformation
manifold. It is defined by choosing disjoint open neighbourhoods Ui of the poles λi of A and taking the fibre of V at
t ∈ D to be the quotient

Vt = Γ (U, π∗Ft )/qΓ (U, π∗Ft ), (18)

where U = ∪Ui and q acts by multiplication. In other words, the fibre is the set of holomorphic maps v : U → Ft ,
modulo the maps with zeros of order ki at each λi . A holomorphic section of V is a section u of π∗F over U , modulo
sections that vanish to the same order at the λi s. Our original bundle F is embedded as a sub-bundle of V by mapping
sections of F to their pull-backs by π .

The 1-form α acts on sections of V by multiplication:

α : Γ (V ) → Γ (V ⊗ T ∗D) : u 7→ αu.

This gives a representation of the algebraic structure on the tangent space to D at each point by endomorphisms of
the fibre of V . The definitions (14) of a, b also make sense in this setting, and encode the original connection ∇ in a
bundle endomorphism b : V → V . Note that a = iEα, and that for any section u of V , the image bu is a section of
the subbundle F ⊂ V . It is unchanged by adding a holomorphic multiple of q to u.

If we pick a trivialization for F and introduce the coordinate xi = x − λi on Ui , then we can identify the fibres of
V with the vector space introduced above. So a local trivialization of F gives us a local trivialization of V .

6. The connection on V

By assumption, the eigenvalues of Q are distinct at the roots of q , and so by making an appropriate choice for the
Ui s, we can assume that this is true throughout U . We can then pick holomorphic sections of π∗F |U , which form a
basis of eigenvectors of Q at each point, and so construct another local trivialization of V . A section v of π∗F |U is
represented by an `p-tuple of holomorphic C`-valued functions (vi (xi )). But now hb is diagonal.

In this frame, a is still in Jordan canonical form, while α takes values in a. In fact, by dropping holomorphic
multiples of q , we can write

αv|Ui = αivi

where αi is a diagonal matrix 1-form on D, with components polynomial of degree ki − 1 in xi .
The meromorphic connection on F determines a flat connection D on V , which extends ∇∞ from the sub-bundle

F ⊂ V to the whole of V . It is defined by using the following proposition, in which we use the new trivialization of
V .

Proposition 3. Let ∇ be a meromorphic connection on π∗F of the form

d + Ω − A dx,

where A is as in (1). Define a, b by (14). Then there is a unique holomorphic connection on V that coincides with
∇∞ = d + Ω∞ on F ⊂ V , where Ω∞ = Ω |∞, with the property that

Da = [b, α] + α.

Proof. Write D = d + β. Then the displayed equation gives

[β, a] = [b, α] + α − da. (19)

By Proposition 2, we can solve this for the components of β. The solution is not unique, since we can add to β

any 1-form with values in h. The freedom is fixed uniquely by imposing the constraint (d + β)v = ∇∞v for any v

independent of x . This ensures that D coincides with ∇∞ on sections of F . Note that b, and therefore also β, are not
block diagonal in this trivialization of V .

Proposition 4. ∇ is a solution of the deformation problem if and only if D2
= 0, Db = 0, and Dα = 0.
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Proof. We return to the presentation (18) of V , and note that the components of Ω∞ are independent of x , and so act
naturally on the fibres of V . The action commutes with a, which is defined in (14) to be multiplication by x .

Let w ∈ C be a point outside the sets Ui and let u be a section of F ⊂ V . We use the fact that a, da, and α all
commute, that βu = Ω∞u, that βb = Ω∞b and that [a,Ω∞] = 0. As in the proof of (15),

b(a − w)−1u = −A(w)u, b(a − w)−1αu = −(Ω(w) − Ω∞)u.

Hence

dA u = (−db + b(a − w)−1 da)(a − w)−1u, ∂wΩ = −b(a − w)−2αu,

with the left-hand sides evaluated at w. Therefore,

(dA + ∂wΩ − [A,Ω ])u = (−db + [b,Ω∞] + b(a − w)−1(da − α − [b, α]))(a − w)−1u

= (−db + [b,Ω∞] − b(a − w)−1
[β, a − w])(a − w)−1u

= −(db + [β, b])(a − w)−1u. (20)

Similarly, by using α ∧ α = 0,

(dΩ + Ω ∧ Ω)u = (dΩ∞ + Ω∞ ∧ Ω∞) u + b(a − w)−1(dα + α ∧ β + β ∧ α)u

+ (db + [β, b]) ∧ (a − w)−1αu. (21)

Also, from (19), and by again using α ∧ α = 0 = da ∧ α = 0,

[a, β ∧ α] = [a, β] ∧ α = α ∧ bα = −[a, α ∧ β].

Hence [a, dα + α ∧ β + β ∧ α] = 0.
Now suppose that ∇ is a solution of the deformation problem. Then the left-hand sides of (20) and (21) vanish, for

all w. It follows from (20) that Db = 0; and from (21), together with Lemma 1, that

Dα = dα + α ∧ β + β ∧ α = 0.

Now βb = Ω∞b, so we have Db = Ω∞b − bβ = 0. But Db = 0 and d + Ω∞ is flat, so we deduce that
b(dβ + β ∧ β) = 0. We also obtain from (19) that

[dβ + β ∧ β, a] = Dα + [b, Dα] = 0

and hence that dβ + β ∧ β = 0, again by Lemma 1.
Conversely, suppose that Db = 0, Dα = 0, and that D2

= 0. Then the curvature of Ω∞ vanishes, and so

dA + ∂wΩ − [A,Ω ] = 0, dΩ + Ω ∧ Ω = 0,

which are the conditions for ∇ to be a solution of the deformation problem.

Suppose that Ω is determined by (9). Then Ω∞ = 0, iEΩ = x A and iEα = a, where E is the Euler vector
field. There is a natural lift of E to V , determined by the corresponding ‘Lie derivative’ operator, which differentiates
sections of V along E . Its action on a section u is defined to be

LE u = E(u) + x
du
dx

.

By considering the flow along the lifted vector field, we see that E(b) = 0. Also since bu = 0 for a section of F ⊂ V ,
we have iEβ = b by taking the inner product of (19) with E .

7. A second trivialization of V

Suppose that λi is an irregular singularity. We can define a diagonal ` × ` matrix wi , with polynomials in xi of
degree ki − 1 as diagonal entries, by truncating the Taylor expansion of xi t

−1/(ki −1)
i about xi = 0. That is,

wi (xi ) = xi t
−1/(ki −1)
i + O(xki

i ) (22)
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as xi → 0. At a regular singularity, we put wi = xi 1`, and note that in any case wi = O(xi ) as xi → 0. As x → λi

g−1
i Agi = −

(ki − 1)w′

i

w
ki
i

+
mi

xi
+ O(1), (23)

g−1
i (Ω − A dλi )gi =

(ki − 1) dwi

w
ki
i

+ O(1) (24)

where the prime is differentiation with respect to xi .
At a singularity,

αi =

{
1` dλi − (w′

i )
−1dwi ki > 1

1` dλi ki = 1

where the prime again denotes differentiation with respect to xi , and d is the exterior derivative on the deformation
manifold, with xi held fixed. We have dropped terms of order xki , since they do not contribute to the action of α on
V ; included amongst them are the terms involving mi since

x−1
i w

ki
i dwi = O(xki ).

If we think of αi as a 1-form on D × Ui , then

αi = 1`(dλi + dxi ) − (w′

i )
−1dwi (25)

where d is now the exterior derivative in D × Ui .
On Ui , the j th component of v is a holomorphic function vi j of xi . We get a new trivialization by instead expressing

v j on Ui as a function of the j th diagonal entry wi j in wi . We note that wi j is a polynomial in xi , and that it vanishes
at xi = 0. So we can represent v by the first ki coefficients in the expansion of the v j s in powers of the wi j s.

With this choice, α is again a matrix-valued 1-form on D with values in a. As a consequence of (25) we have
dα = 0 since in the new trivialization of V , the exterior derivative of the j th diagonal entry in αi is taken with wi j
held fixed. However, a is no longer in Jordan form: its diagonal blocks are now

λi 1` ai1 ai2 a13 . . . ai,ki −1
0 λi 1` ai1 ai2 . . . ai,ki −2

. . .
. . .

0 0 0 0 . . . λi 1`

 ,

where the entries ai j are as in Appendix A, Eq. (39); that is, they are the alternative deformation parameters.
The only freedom is in the choice of the eigenvectors of Q in a neighbourhood of the poles. If we fix the order of

the eigenvalues, then the trivialization of V is fixed up to rescaling the eigenvectors of Q by holomorphic functions on
U . These leave the matrix representations of a and α unchanged. Our matrices wi are determined up to holomorphic
multiples of q on the open sets Ui ⊂ CP1 by the 1-form A dx and do not depend on the choice of the coordinate x on
the Riemann sphere. If we represent α as a 1-form on D with values in the functions on U , and replace z by t z, for
some nonzero t ∈ C, then α is replaced by tα. In the second local trivialization, the diagonal blocks in α are all scaled
by t (although in the first they transform in a more complicated way) and so

LEα = α,

where E is the Euler vector field. Since we also have dα = 0, we conclude that α = da; and also that the flow of E
on D is given by the multiplication action of C∗ on a. To summarize, we have the following.

Proposition 5. Locally, in a neighbourhood of a point of the deformation manifold at which the eigenvalues of Q are
distinct and nonzero, there exists a frame for V in which dα = 0, α = da, and E(a) = a. The frame is determined up
to transformations which leave the matrix representations of a and α unchanged.
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8. Other forms of the deformation equations

If we choose a local trivialization of V as in Proposition 5, then a and α are represented by block diagonal matrices
and α = da. We can use the entries in a as local coordinates on D, with the transformation to the deformation
parameters used by Jimbo et al. as in (40). The matrix representation of a and α is the same for all local trivializations
in this class; so the coordinates on D are canonical, up to the ambiguity in taking fractional powers to determine the
matrices wi from the eigenvalues of A.

With this choice of ‘gauge’, the deformation equations become

db + [β, b] = 0, [β, a] = [b, da] (26)

for b as a function of a ∈ a, subject to the two constraints. The first is that b2
= 0. The second is the following

necessary and sufficient condition that the second equation should be soluble for β, given b, a, and da.
(C) Let g ∈ GL(N , C) be such that gag−1 is in Jordan canonical form. Then[

hgbg−1 , c
]

= 0

for every c ∈ a.
See Proposition 2. Note that when a is in Jordan canonical form, it coincides with v 7→ xv.
The frames of both the trivializations are invariant under the lift of the flow of the Euler vector field to V .

Consequentially the gauge transformation from the original presentation of V to either is constant along E . Therefore,
it is still true in the second frame that iEβ = b.

An alternative route to this form of the deformation equation is to note that, from the proof of Proposition 4,

dα + α ∧ β + β ∧ α = 0, dβ + β ∧ β = 0.

The gauge transformation in Proposition 9, in the Appendix B, then yields the equations to the form (26), with the
second equation following from α = da by taking the inner product of

α ∧ β + β ∧ α = 0

with E .

Example. The Schlesinger equations give the isomonodromic deformations of the system

dy
dx

=

p∑
1

Ai y
x − λi

where the Ai s are ` × ` matrices, independent of x . The deformation parameters are the λi s. We take
∑

Ai = 0, so
there is no singularity at infinity. In the alternative formulation, N = `p and a is the set of N × N diagonal matrices
with diagonal blocks λi 1`. We obtain the deformation equations from (26) by taking

b =


A1 A2 A3 . . . Ap
A1 A2 A3 . . . Ap
...

A1 A2 A3 . . . Ap

 .

The constraint (C) is vacuous in this case, and, for example, the dλ1 component of β1

β1 =



p∑
2

Ci i −C22 −C33 . . . C pp

−C12 C12 0 . . . 0
−C13 0 C13 . . . 0

...

−C1p 0 0 . . . C1p


,
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where Ci j = Ai/(λ1 − λ j ). Eq. (26) then gives

∂1 A1 =

[
A1,

p∑
2

Ai

λi − λ1

]
, ∂1 A j =

[A1, A j ]

λi − λ1
( j 6= 1).

The other Schlesinger equations follow similarly. This presentation of the Schlesinger equations also occurs in
Haraoka and Filipuk [5]. �

We shall now look at the deformation equations from three other points of view.

• As a Hamiltonian system;
• As a symmetry reduction of a generalized form of the self-dual Yang–Mills equations; and
• As an equivariance condition on a vector bundle over a ‘twistor space’;

9. Hamiltonian system

The linear system

dy
dz

+

(
a +

b
z

)
y = 0, (27)

where y takes values in CN , has two singularities—a regular one at the origin, and a double pole at infinity. Since
the singularities can be returned to these positions by a Möbius transformation, the only non-trivial isomonodromic
deformations are those that change a and b.

It follows from b2
= 0 that there is a gauge transformation g(z), holormorphic throughout C, such that

g−1 dg
dz

+ g−1
(

a +
b
z

)
g =

b
z
. (28)

The coefficients in the Taylor expansion of g are found by solving ngn + [b, gn] = −agn−1 with g0 = 1N . Since
b2

= 0, the solution exists and the series converges, as can be seen by rewriting the recursion relation in the form

gn = −n−1agn−1 + n−2bagn−1 − n−2agn−1b + 2n−3bagn−1b.

To understand the Hamiltonian nature of the deformations, we work in the more general setting of ‘affine’ coadjoint
orbits of the loop group LGL(N , C), taking some ideas from Pressley and Segal [12, pp. 49–50].1 Let Γ ⊂ C denote
the unit circle in the complex plane, and let U+ and U− denote the discs on the Riemann sphere bounded by Γ , and
containing, respectively, the origin and the point at infinity. Consider the set of smooth 1-forms on Γ with values in
gl(N , C). Each 1-form

µ = B dz

determines a monodromy matrix, up to conjugacy: we pick a fundamental solution y : Γ → GL(N , C) of the
differential equation

dy + µy = 0 (29)

and define the monodromy to be the constant matrix m = y−1 ỹ, where ỹ is the continuation of y once around Γ
in a positive sense (see [12, p. 124]). Since y is unique up to multiplication on the right by a constant matrix, the
monodromy is determined by µ up to conjugacy. If m = exp(−2π ib0) for b0 ∈ gl(N , C), then we can construct an
element f of the loop group LGL(N , C) from y amd m by putting f = y exp(b0 log z).

1 The coadjoint orbits of a finite-dimensional Lie group are symplectic manifolds; the affine coadjoint orbits appear in an extension of this theory
due to Souriau, in which a translation term determined by a Lie algebra cocycle is added to the coadjoint action on the dual Lie algebra (see [14,
pp. 55–56]). In this context, the cocycle is given by integrating tr(hdh′) around Γ , and the affine action is the action of LGL(N ,C) by gauge
transformations.
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We denote by M the set of 1-forms for which the monodromy is conjugate to a fixed matrix m = exp(−2π ib0),
and f lies in the identity component LGL(N , C)0 of the loop group LGL(N , C). Any two elements µ, µ̂ of M are
related by a gauge transformation

µ 7→ µ̂ = g−1µg + g−1dg,

where g is found by choosing fundamental solutions y and ŷ of the corresponding differential equations with
monodromy m and by putting g = y ŷ−1. We can recover B from f by

B dz = −d f f −1
+ z−1 f b0 f −1 dz. (30)

Since B is unchanged when f is multiplied on the right by a constant matrix that commutes with the monodromy
generator, we have the following.

Proposition 6. The space of smooth 1-forms µ on Γ with values in gl(N , C) and with monodromy conjugate to m is
LGL(N , C)0/G0, where G0 is isomorphic to the subgroup of GL(N , C) that fixes b0 under the adjoint representation.
The tangent space toM at µ is given by the infinitesimal gauge transformations δµ = Dh

Dh = dh + [µ, h], (31)

where h : Γ → gl(N , C). Two infinitesimal gauge transformations determine the same tangent whenever their
difference satisfies Dh = 0.

The symplectic form onM is defined by

ω(h, h′) =
1

2π i

∮
tr(hDh′). (32)

It is skew symmetric, by integration by parts, and non-degenerate, since ω(h, .) = 0 only if dh − µh = 0. It is closed
since its pull-back to LGL(N , C) is dθ , where

θ(h) = −
1

2π i

∮
tr(µh).

Note that θ itself does not descend toM.
On a dense open subset ofM, we have the Birkhoff factorization

f = f −1
− f+,

where f+, f− lie respectively in LGL+(N , C) and LGL−(N , C); that is the subgroups of loops that extend
respectively to holomorphic maps U± → GL(N , C). The factorization is fixed uniquely by imposing the condition
f−(∞) = 1. From (30),

f−µ f −1
− − d f− f −1

− = z−1 f+b0 f −1
+ dz − d f+ f −1

+ .

The right-hand side is a 1-form on U+, which is holomorphic apart from a simple pole at z = 0. We denote it by µ+

and deduce from the equality that

µ = f −1
− µ+ f− + f −1

− d f−.

That is, µ is gauge equivalent to µ+.
The only choice is that of f , which we are free to multiply on the right by a constant matrix that commutes with

m. The effect is to multiply f+ on the right by the same constant matrix. Modulo this freedom, we can parameterize
(most of)M by f− ∈ LGL−(N , C), with f−(∞) = 1, and µ+. The points that are not covered are those at which the
Birkhoff factorization fails.

If we vary µ, then

δµ = f −1
− (δµ+ + [µ+, h−] + dh−) f−,

h = −δ f f −1
= f −1

− (h− − h+) f−,
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where h± = δ f± f −1
± . We deduce that the symplectic form can also be written

ω(h, h′) =
1

2π i

∮
tr(h−δ′µ+ − h′

−δµ+ − µ+[h−, h′
−] − h+δ′µ+). (33)

Note that h−(∞) = 0.
The isomonodromic deformation equations are obtained by considering the relationship between two actions on

M.

10. The loop group and the Marsden–Weinstein reduction

The identity component of the loop group LGL(N , C)0 acts onM by gauge transformations. If h is a fixed element
of the Lie algebra lgl(N , C), which is the set of smooth maps Γ → gl(N , C), then its flow is given by (31). It is
generated by the function

fh = −
1

2π i

∮
tr(µh), (34)

on M. However, the action is not Hamiltonian, since the Poisson bracket { fh, fh′} of two generators differs from
f[h,h′] by a nontrivial Lie algebra cocycle

{ fh, fh′} = f[h,h′] +
1

2π i

∮
tr(h′dh).

But (34) is a moment for any subgroup for which the cocycle vanishes. One such case is the subgroup LGL−2(N , C)

of loops that extend holomorphically to U− and that are of the form 1 + O(z−2) as z → ∞. In this case, we get a
moment map ρ fromM into the dual Lie algebra by putting

〈ρ(µ), h〉 = fh(µ).

We note that ρ(µ) = 0 if and only if B extends holomorphically to the outside of Γ on the Riemann sphere, that is, if
µ extends holomorphically except for a pole of order 2 at z = ∞. The corresponding Marsden–Weinstein reduction

M = ρ−1(0)/LGL−2(N , C)

is a finite-dimensional symplectic manifold. Its points are equivalence classes of holomorphic maps B : U− →

gl(N , C), which extend smoothly to the boundary Γ , with B, B ′ equivalent whenever

B dz = g−1 B ′g dz + g−1dg,

for some g : U− → GL(N , C) such that g = 1 + O(z−2) as z → ∞. The action of LGL−(N , C) descends to the
reduction, as does the action of the subgroup LGL−1(N , C) of loops for which g(∞) = 1.

For any µ ∈ ρ−1(0), we can replace the integral around Γ in (32) by any contour in U− winding once around the
point at infinity. In this case, if f can be factorized, then µ+ is holomorphic in U− apart from a pole of order 2 at
infinity. Since µ+ is also holomorphic on U+ we must have

µ+ = (a + z−1b) dz,

where a is independent of z and b = kb0k−1, with k = f+(0). So apart from the singular points at which the
factorization fails, points of M are parametrized by a, b, together with f− ∈ LGL(N , C)− of the form

f− = 1 + z−1 p.

Evaluation of the residues in (33) then gives the reduced symplectic form as

ω = tr(dp ∧ da − b0k−1 dk ∧ k−1 dk),

where k = f+(0). Thus a and p are conjugate variables, while the last term is the natural symplectic form on the
adjoint orbit of b0—the orbit determined by the monodromy. The symplectic form coincides with that on T ∗g × O,
where O is the adjoint orbit of the monodromy generator b0, and g = gl(N , C).
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11. Flows of spectral invariants

These flows are generated by Hamiltonians constructed from the eigenvalues of B. They are defined in a
neighbourhood of Σ ⊂ M , where Σ is the subset of M defined by the condition that a should be conjugate to an
element of a.

Fix, for the moment, a base point µ = B dz ∈ Σ . For generic b, the set of eigenvalues of B near z = ∞

is partitioned into subsets labelled by the Jordan blocks in the canonical form of a. As z → ∞, the eigenvalues
corresponding to block J are of the form

ν = λ + O(z−1/k) (35)

where λ is an eigenvalue of a of J , and k is the size of J . A circuit of ∞ permutes the eigenvalues within each partition
but does not mix the eigenvalues in different partitions. Near z = ∞, we can write

B = g(z)∆g(z)−1, (36)

where ∆ is diagonal, with the νs on the diagonal. The matrix g(z) is holomorphic near ∞, except that it is not single-
valued and has a branching singularity at ∞. However g(z) = o(z) as z → ∞. If µ′

= B ′ dz is close to µ, then its
eigenvalues near z = ∞ can be partitioned in the same way, according to their limiting behaviour as B ′

→ B for
fixed z.

The Hamiltonians in which we interested are of two types. The first type is

Hi =
1

4π i

∮
z
∑

ν2 dz (37)

where i labels the poles of A in the original problem and the sum is over all the blocks for which λ = λi . The second
is

HJ j =
1

2π i( j + 1)

∮
z
∑

J

(ν − ν0)
j+1 dz, j = 1, . . . , |J |,

where |J | is the size of block J and ν0 =
∑

J ν.
It is claimed that the flows of both types of Hamiltonian are tangent to Σ . To establish this, we find the variations

δi B and δJ j B generated by the Hamiltonian flows at the base point. We note first that that these are orthogonal with
respect to ω to all variations δB that leave g(z) unchanged. We can construct other variations δξJ B by replacing the
eigenvalues in (36) of a block J by the corresponding branches of a convergent power series

ξJ = ξ0 + ξ1z−1/k
+ ξ2z−2/k

+ · · ·

in z1/k , and setting the other entries in ∆ to zero. The result is a variation δB which is holomorphic in a neighbourhood
of z = ∞, since δB is single-valued on Γ ′ and equal to o(z) as z → ∞. The variations generated by the Hamiltonians
at the base point are determined by their ω-inner products with these variations.

Let BJ denote the matrix obtained by taking ξJ = ν.

HJ j =
1

2π i( j + 1)

∮
tr(z(BJ − trBJ ) j+1)dz.

Under a variation given by ξJ ′ for J ′
6= J , we have δHJ j = 0. While for a variation given by ξJ , we have

δtr(BJ − trBJ ) j+1
= ( j + 1)tr((BJ − trBJ ) j δξJ B).

Since we can evaluate ω at the base point by using any small circuit of z = ∞, we conclude that the Hamiltonian flow
generated by HJ j is given at µ by

δJ j B = D(z(BJ − trBJ ) j ).

This preserves the canonical form of a and is therefore tangential to Σ . We similarly find the flow of Hi to be

δ j B =

∑
D(zBJ )
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with the same sum as in (37) and the Hi s are in involution, while

{HJ j , HJ ′ j ′} =

{
0 if c 6= c′

( j − j ′)HJ, j+ j ′−1 if J = J ′.

For j > |c|, HJ j is defined by the same formula, but the Hamiltonian vector field is linearly dependent on those for
lower values of j .

Proposition 7. The flows of the Hamiltonians HJ j map orbits of LGL−1(N , C) in Σ to orbits of LGL−1(N , C).

Proof. Let µ ∈ ρ−1(0) be the representative of a point in Σ , so that B and the matrices BJ extend holomorphically
to D−. The infinitesimal flow of HJ j is

δJ j B = [h J j , B] − ∂zh J j = −∂zh J j ,

where h J j = z(BJ − tr) j . The right-hand side is holomorphic at infinity, so the flow at µ is tangent to ρ−1(0).
Let h ∈ lgl−(N , C), the Lie algebra of LGL−(N , C). This generates the flow δh B = Dh. Therefore

δh BJ = [h, BJ ] + O(z−2)

as z → ∞. Since δJ j k = 0, we have

δk(h J j ) − δJ j k − [h J j , k] = O(z−1)

as z → ∞. Therefore, the commutator of the two flows coincides at B with the flow of a generator of LGL−1(N , C).

How do the flows of the Hamiltonians give solutions of the isomonodromy problem? Consider the submanifold
Σ+ ⊂ Σ given by µ = µ+. This is p = 0 in our parameterization. For nearby points B at which the Birkhoff
factorization exists, we have a projection B 7→ B+ onto Σ+, given by setting p = 0. Since the flow of HJ j maps
orbits of LGL−1(N , C) to orbits of LGL−1(N , C), the flows project onto Σ . If in the notation of the proof, we write

h J j = zαJ j + βJ j + O(z−1),

then, since [B, h J j ] = 0, we have

[a, αJ j ] = 0, [a, β] = [αJ j , b]

and the projected flow on Σ is

δJ j a = α j,J , δJ j b + [βJ j , b] = 0.

In particular, when a ∈ a, then the flows give the solutions of (2). The picture is similar for the Hi s. The deformations
generated by the Hi s move the positions of the poles in the original deformation problem without changing the
behaviour at A at its poles beyond a local coordinate transformation. Those generated by the HJ j s fix the poles of A,
but change the other deformation parameters.

12. ‘Self-dual’ connections

We now turn to the interpretation of (5) as a ‘self-dual’ connection. In the standard theory, the Penrose–Ward
transform identifies solutions of the self-dual Yang Mills equations in regions of complex Minkowski space (or in
Euclidean space) with holomorphic vector bundles over corresponding open sets in the complex projective space
CP3. The statement and proof of the theorem [13, Theorem 8.1.2] carry over almost unaltered to the present context.
The only difference is that the twistor space is now P(a ⊕ C2) instead of CP3. The variables ω ∈ a and πA ∈ C2 are
homogeneous coordinates on Z , and each null N -plane determines a point in Z , through (6). Conversely, every point
of Z determines a unique null plane, except the points on the line I = {πA = 0}. As in the standard theory, we can
compactify M by adding points at infinity to include these exceptional null N -planes, but that is not explored here.

Going in the other direction, each point in M gives a line in Z , by reading (6) the other way around, with s, t fixed
and ω and πA varying. Conversely, every line in Z , other than those that intersect I , determines a point in M. The
lines that intersect I correspond to the points at infinity in the compactification of M.
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This correspondence maps self-dual connections on the trivial vector bundle over a convex region W ⊂ M to
holomorphic bundles over Z , where Z is the set of null N -planes that intersect W . It is one-to-one provided that the
bundle is trivial on one line in ZW , and therefore on the generic line.

In this context, the role of the conformal group of space–time falls to the group transformations of (the
compactification of) M that map null N -planes to null N -planes. These include the three flows

(s, t) 7→ (s, eτ t), (s, t) 7→ (s + τc, t), (s, t) 7→ (s, t + τc),

where τ ∈ C is the parameter along the flows and c ∈ a is constant. We denote the respective generating vector fields
on M by E , Sc, and Tc. Since the flows map null N -planes to null N -planes, they induce flows on twistor space, given
respectively by

(ω, π) 7→ (ω, e−τπ0, π1), (ω, π) 7→ (ω + τπ1c, π), (ω, π) 7→ (ω + τπ0c, π).

We shall also denote the corresponding generating vector fields on twistor space by E , Sc, and Tc.
The particular ‘self-dual’ connections that correspond to solutions of the isomonodromy problem are equivariant

along the flows of E and Sc on twistor space for all c ∈ a, and satisfy special conditions at the fixed points of these
flows. I shall not go into the details of this construction because they follow exactly the same pattern as the standard
examples explored in Ward and Wells [13] or in Mason and Woodhouse [11]: the construction is important here only
because it provides the geometric context of the following more explicit reduction to a Riemann–Hilbert problem. The
transition is obtained by introducing the inhomogeneous coordinates

Z = ω/π1, z = π0/π1,

and by representing the bundle by its patching matrix P(Z , z). In the inhomogeneous coordinates, Eq. (6) becomes
Z = s + zt , and the flows of Sc and Tc become, respectively,

Z 7→ Z + τc (Sc), Z 7→ Z + τ zc (Tc),

where τ ∈ C is the parameter along the flow.

13. Reduction to a Riemann–Hilbert problem

Let Z be an open neighbourhood of a line in P(a ⊕ C2) and let Z+ and Z− be the complements in Z of,
respectively, the hyperplanes z = ∞ and z = 0. We assume that Z = Z+ ∪ Z−; that is, that it contains no points at
which πA = 0. Let

P : Z+ ∩ Z− → GL(N , C)

be holomorphic. By restriction, P determines a map PX : C \ {0} → GL(N , C) for each line X ⊂ Z . If X is given by
(6) and P is expressed as a function of the inhomogeneous coordinates Z , z, then

PX (z) = P(s + zt, z).

We write the Birkhoff factorization as

PX = f −1
− (s, t, z)∆ f+(s, t, z), (38)

where f−, f+ are holomorphic at, respectively, z = ∞ and z = 0, and ∆ is diagonal with powers of z on the diagonal.

Proposition 8. Suppose that ∆ = I for one line inZ; and Sc(P) = θc P, E(P) = −Pb0, where θc : Z− → gl(N , C),
with θc = c on π1 = 0, and b0 is constant. Then ∆ = I for a dense open subset of the lines in Z . The Birkhoff
factorization can be fixed uniquely on this set by the condition f−(s, t, ∞) = exp(−s). In this case, k = f+(s, t, 0)

is independent of s and a solution of (2) with monodromy matrix m = exp(2π ib0) is obtained by putting β = k−1dk
and b = iEβ.

The proposition is a translation into a concrete form of the Ward correspondence for bundles with the appropriate
equivariance. We shall prove it directly rather than by working through the details of the correspondence in this case.
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Proof. The first statement is a standard part of the theory of Birkhoff factorizations (see Pressley and Segal [12,
Ch. 8]). When ∆ = I , we are free to transfer a z-independent matrix from f+ to f−, so we have the freedom to
impose the ‘gauge condition’. The remaining statements follow by differentiating (38) and by applying Liouville’s
theorem. Since P is constant on N -planes, we have, for each c ∈ a

Tc( f+) f −1
+ − zSc( f+) f −1

+ = Tc( f−) f −1
− − zSc( f−) f −1

− .

The left-hand side is holomorphic in z at the origin, and the right-hand side has a simple pole at z = ∞. We conclude
from Liouville’s theorem that both sides must be equal to

βc + zαc

for some gl(N , C)-valued functions αc and βc on M, depending linearly on c. By considering the behaviour at z = ∞

and by using the gauge condition, we have αc = c.
By differentiating (38) along the flows of Sc on Z and M,

Sc P = θc P = − f −1
− Sc( f−) f −1

− f+ + f −1
− Sc f+,

from which we obtain

Sc( f−) f −1
− + f−θc f −1

− = Sc( f+) f −1
+ .

The left hand-side is holomorphic and vanishes at z = ∞ by the properties of θc and the gauge condition. The right-
hand side is holomorphic at z = 0. By Liouville’s theorem, both sides are identically zero. It follows that f+ and k
are independent of s, and hence that

Tc( f+) f −1
+ = βc + zc.

We also have

−z∂z P = Pb0 = − f −1
− E( f−) f −1

− f+ + f −1
− E f+,

and hence

E( f+) f −1
+ − f+b0 f −1

+ = E( f−) f −1
− .

Again both sides must be independent of z. Since the right-hand side vanishes at z = ∞, where f− is independent of
t , we conclude that both sides vanish identically.

It follows that if we define a 1-form β on M by

iScβ = 0, iTcβ = βc,

then β = (dk)k−1 and LEβ = 0. The proposition follows.

Finally we prove Proposition 1. Suppose that b(a) is a solution of (2) satisfying the constraints. Then the linear
equations

d f − β(a) f − z da f = 0

can be solved holomorphically in z, at least locally. If we also haveLEβ = 0, then β = dk k−1, where k(a) = f (a, 0),
and b = kb0k−1 for some constant b0. By exploiting the homogeneity of the linear system under the flow of E , we
can ensure that

f (λa, λ−1z) = f (a, z),

for λ in some neighbourhood of 1 ∈ C. It then follows that

∂z f + (a + z−1b) f = z−1 f b0

and consequently that f = gk, where g is as in (28). Therefore f is holomorphic for all z. Proposition 1 now follows
by taking P(Z , z) = f (z−1 Z , z) and by applying Proposition 8.
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Appendix A

Here we find the transformation between the orginal parameters λi , ti on the deformation manifold and the entries
in a.

At an irregular singularity λi , let wi be the matrix defined in (22). At a regular singularity, we put wi = 0. Note
that in any case wi (0) = 0 and that the polynomial coefficients of wi depend on those of ti but not on the exponents
of formal monodromy nor on the positions of the poles. At x = λi ,

g−1
i Agi =

d
dxi

(
1

w
ki −1
i

)
+

mi

xi
+ O(1) as xi → 0.

By inverting the relationship between the entries in wi and xi , we can write

xi 1` = ai1wi + ai2w
2
i + · · · + ai,ki −1w

ki −1
i , (39)

where the coefficients ai j (i = 1, . . . , m, j = 1, . . . , ki − 1) are diagonal matrices with complex entries. Since

ti (ai1wi + ai2w
2
i + · · ·) = (ai1 + ai2wi + ai3w

2
i + · · ·)ki −1

+ O(xk
i )

we can relate the ai j s to the matrices ti by comparing coefficients of powers of wi . The result is that the coefficients
of the diagonal entries in ti are polynomials in the diagonal entries in the ai j s:

ti = aki −1
i1 + (ki − 1)aki −3

i1 ai2xi +

(
1
2
(ki − 1)(ki − 4)aki −5

i1 a2
i2 + (ki − 1)aki −4

1 ai3

)
x2

i

+

(
1
6
(ki − 1)(ki − 5)(ki − 6)aki −7

i1 a3
i2 + (ki − 1)(ki − 5)aki −6

1 ai2ai3 + (ki − 1)aki −5
i1 ai4

)
x3

i + · · · .

(40)

The coefficients of terms with negative powers of ai1 all vanish. It is the diagonal entries in the ai j s that we shall use
in place of the parameters in Jimbo et al. as coordinates on D—or more precisely on a covering space of D.

Appendix B

Suppose that α and β are GL(N , C)-valued 1-forms such that α takes values in a and

dα + α ∧ β + β ∧ α = 0, dβ + β ∧ β = 0 LEα = α.

We assume that iEα has the generic Jordan canonical form of the elements of a.
We consider gauge transformations of the form

α 7→ hαh−1 β 7→ dh h−1
+ hβh−1.

Proposition 9. The gauge can be chosen locally so that dα = 0, LEα = α, and α takes values in a.

Proof. We consider first the case in which the matrices in a have only one Jordan block of size n. We denote by k the
normalizer of a in gl(N , C). This is spanned by the matrices of the form a + Da′ where D = diag (0, 1, 2, , 3, . . .)

and a, a′ are in a; that is, a, a′ are of the form
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a =


a0 a1 a2 a3 . . .

0 a0 a1 a2
0 0 a0 a1

. . .
. . .

. . .

 .

We note that [Da, Da′
] = Da′′, where a′′

= [a′, D]a − [a, D]a′.

Lemma 4. There exists a 1-form ξ with values in k such that

dα + α ∧ ξ + ξ ∧ α = 0, iEξ = 0. (41)

Proof. Write β = (βi j ), and

α =


α0 α1 α2

0 α0 α1
. . .

. . .
. . .

 .

By the assumption that a has the generic Jordan canonical form, a1 = iEα1 6= 0. We shall look for ξ of the form

ξ = D


ξ0 ξ1 ξ2 . . . ξn−2 0
0 ξ0 ξ1 . . . ξn−2
0 0 ξ0 . . . ξn−3
...

...
...

. . .
...

0 0 0 . . . ξ0

 ,

with iEξi = 0. Put αi = 0 for i < 0. Then Eq. (41) reads

dα j−i +

n∑
k=1

(
αk−i ∧ βk j + βik ∧ α j−k

)
= 0. (42)

By putting i = j and summing over i , we find dα0 = 0.
Given β, therefore, the problem is to find ξ0, . . . , ξn−2 such that

dα1 + α1 ∧ ξ0 = 0
dα2 + α1 ∧ ξ1 + 2α2 ∧ ξ0 = 0
dα3 + α1 ∧ ξ2 + 2α2 ∧ ξ1 + 3α3 ∧ ξ0 = 0

...

dαn−1 + α1 ∧ ξn−2 + 2α2 ∧ ξn−3 + · · · + (n − 1)αn−1 ∧ ξ0 = 0. (43)

If ξ0, . . . , ξr−3 are known, and the first r − 2 equations hold, then ξr−2 can be found so that the (r − 1)th equation
also holds, provided that

α1 ∧ (dαr−1 + 2α2 ∧ ξr−3 + · · · + (r − 1)αr−1 ∧ ξ0) = 0;

That is, provided that,

α1 ∧ dαr−1 + 2α2 ∧ dαr−2 + 3α3 ∧ dαr−3 + · · · + (r − 1)αr−1 ∧ dα1 = 0. (44)

So we can find ξ provided that this holds for r = 1, . . . , n − 1.
We can rewrite (44) as

n∑
i=p

q∑
j=1

αi− j+r ∧ dα j−i = 0
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for any 0 ≤ p, q ≤ n such that r = q − p + 1. By taking the exterior product of (42) with αi− j+r and summing, we
obtain

n∑
i=p

q∑
j=1

αi− j+r ∧ dα j−i +

n∑
i=p

q∑
j=1

n∑
k=1

αi− j+r ∧ αk−i ∧ βk j +

n∑
k=p

q∑
i=1

n∑
j=1

αk−i+r ∧ βk j ∧ αi− j = 0.

In the case m = k − p − q + j > 0, the coefficient of βk j (k ≥ p, j ≤ q) is

k−1∑
i=p

αi− j+r ∧ αk−i −

q∑
i= j+1

αk−i+r ∧ αi− j =

m∑
i=1

αi+q− j ∧ αk−p−i+1 = 0.

Similarly in the cases m = 0 and m < 0. It follows that (44) holds. The 1-form ξ is uniquely determined by (43)
up to the addition of terms in α1. We use this freedom to impose the additonal condition that iEξ = 0, which then
determines ξ uniquely.

Lemma 5. dξ + ξ ∧ ξ = 0.

Proof. We find ξ , as in the previous lemma. Put Ξ = dξ + ξ ∧ ξ . Then

Ξ =


0 0 0 . . . 0
0 ω0 ω1 . . . ωn−2
0 0 2ω0 . . . 2ωn−3
...

...
...

. . .
...

0 0 0 . . . (n − 1)ω0

 ,

where

ω0 = dξ0

ω1 = dξ1 + ξ1 ∧ ξ0

ω2 = dξ2 + 2ξ2 ∧ ξ0

ω3 = dξ3 + 3ξ3 ∧ ξ0 + ξ2 ∧ ξ1
...

ωk = dξk +

∑
i> k

2

(2i − k)ξi ∧ ξk−i .

From the definition of Ξ as a curvature form, we obtain

dΞ + ξ ∧ Ξ − Ξ ∧ ξ = 0. (45)

By taking the exterior derivative of (41), we obtain

dξ ∧ α − ξ ∧ dα + dα ∧ ξ − α ∧ dξ = 0

and hence from (41) again

Ξ ∧ α + α ∧ Ξ = 0. (46)

By taking the inner product of (41) with E and by using LEα = α, we have

[a, ξ ] = da − α,

where a = iEα. By taking the exterior derivative of (41), we have

da ∧ ξ + ξ ∧ da + [a, dξ ] = −dα

and hence, by taking the inner product with E again, and by using E(a) = a, we have

[a, ξ ] − da + α + [a, iE dξ ] = 0.

Therefore [a, iEξ ] = 0. The particular form of ξ then gives iEξ = 0. It follows that iEΞ = 0 and hence from (46)
that [a,Ξ ] = 0. Finally, again from the special form of Ξ , we obtain Ξ = 0.
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Both lemmas hold for general a, by applying the same arguments to each diagonal block. From the second lemma, we
have ξ = −(dh)h−1 for some h taking values in the normalizer group of a. If we make a gauge transformation by h,
then

dα 7→ d(h−1dαh) = h−1(ξ ∧ α + dα + α ∧ dξ)h = 0,

which concludes the proof of the proposition.
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